# Large-scale Retrospective Monte Carlo Dose Recalculation For Permanent Implant Prostate Brachytherapy

Samuel Ouellet<sup>1,2</sup>, Yannick Lemaréchal<sup>1,2</sup>, Francisco Berumen Murillo<sup>1,2</sup>, Marie-Claude Lavallée<sup>1,2</sup>, Éric Vigneault<sup>2</sup>, André-Guy Martin<sup>2</sup>, William Foster<sup>2</sup>, Rowan M. Thomson<sup>3</sup>, Philippe Després<sup>1,2</sup>, Luc Beaulieu<sup>1,2</sup> <sup>1</sup> Département de physique, de génie physique et d'optique et Service de physique et de Radio-protection CIC CHU Québec Université Laval



<sup>2</sup> Service de Radio-Oncologie CIC et Centre de recherche CHU de Québec, Centre de recherche sur le Cancer de l'Université Laval <sup>3</sup> Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, Canada



#### Introduction

- TG43<sup>1</sup> dose calculation considers patients as infinite water volumes.
- This method is inaccurate at low energies due to heterogeneities.
- TG186<sup>2</sup> proposes material assignment based on organ contours.
- Monte Carlo simulations are gold standard for dose calculations.
- Dosimetric datasets are key to building treatment outcome models.
- An automated Monte Carlo (MC) dose recalculation pipeline was previously validated and tested on a 240-patient cohort<sup>3</sup>.

#### Aim

Retrospectively recalculate the MC dose distributions using the TG186 formalism and investigate dosimetric differences for a cohort of 960 permanent implant prostate brachytherapy patients.

### Material/Methods

- Calcifications segmented when present for TG186 material assignment.
- egs\_brachy<sup>4</sup> 10<sup>8</sup> photons simulations with track length estimator (STD < 2% in prostate)
- MC pipeline launched on data storage and analysis platform (PARADIM<sup>5</sup>).
- Three simulations compared to TPS TG43 point source dose:
  - 1. MCTG43: TG43-like conditions at TPS dose grid resolution.
  - 2. MCTG43CT: TG43-like conditions at CT resolution.
  - 3. TG186: Patient geometry at CT resolution.



Figure 1 shows expected behaviors such as the differences between TG43 and point line source approximations (light blue), the variability in grid-based DVH algorithms (dark blue), and the differences between TG43 and TG186 (orange)<sup>3</sup>. Finally, significant differences are seen between clinical data and TG186 simulations (green).

Figure 2 shows a general decrease of 2.57% per % of calcification in the prostate. This decrease agrees with the 2.51% from previous works<sup>6</sup> while reaching a better correlation ( $R^2$  of 0.925 vs 0.84<sup>6</sup>).



MCTG43CT, and TG186)\*.



**Figure 2.** PTV D90 differences between the MCTG43CT and TG186 MC simulations as a function of relative calcification volume

# Conclusion

The produced MC dose dataset with three MC simulations for 960 patients constitutes a key resource for future dosimetric studies. Such studies would correlate accurate delivered dose to the treatment outcome.

## References

 M. J. Rivard et al., Medical Physics 36, 2136–2153 (2009).
L. Beaulieu et al., Medical Physics 39, 6208–6236 (2012).
S. Ouellet et al., Submitted: PMB. (2023).
M. J. P. Chamberland, PMB, 61, 8214–8231 (2016).
PARADIM, fr-FR, <u>https://paradim.science/</u>. (2023)
N. Miksys et al.. International Journal of Radiation Oncology\*Biology\*Physics, 97(3):606–615, (2017)



\*Using PARADIM, the pipeline was launched simultaneously on 20 patients. Each patient took on average 25 minutes; a total of 60 hours for the three MC simulations on all 960 patients.