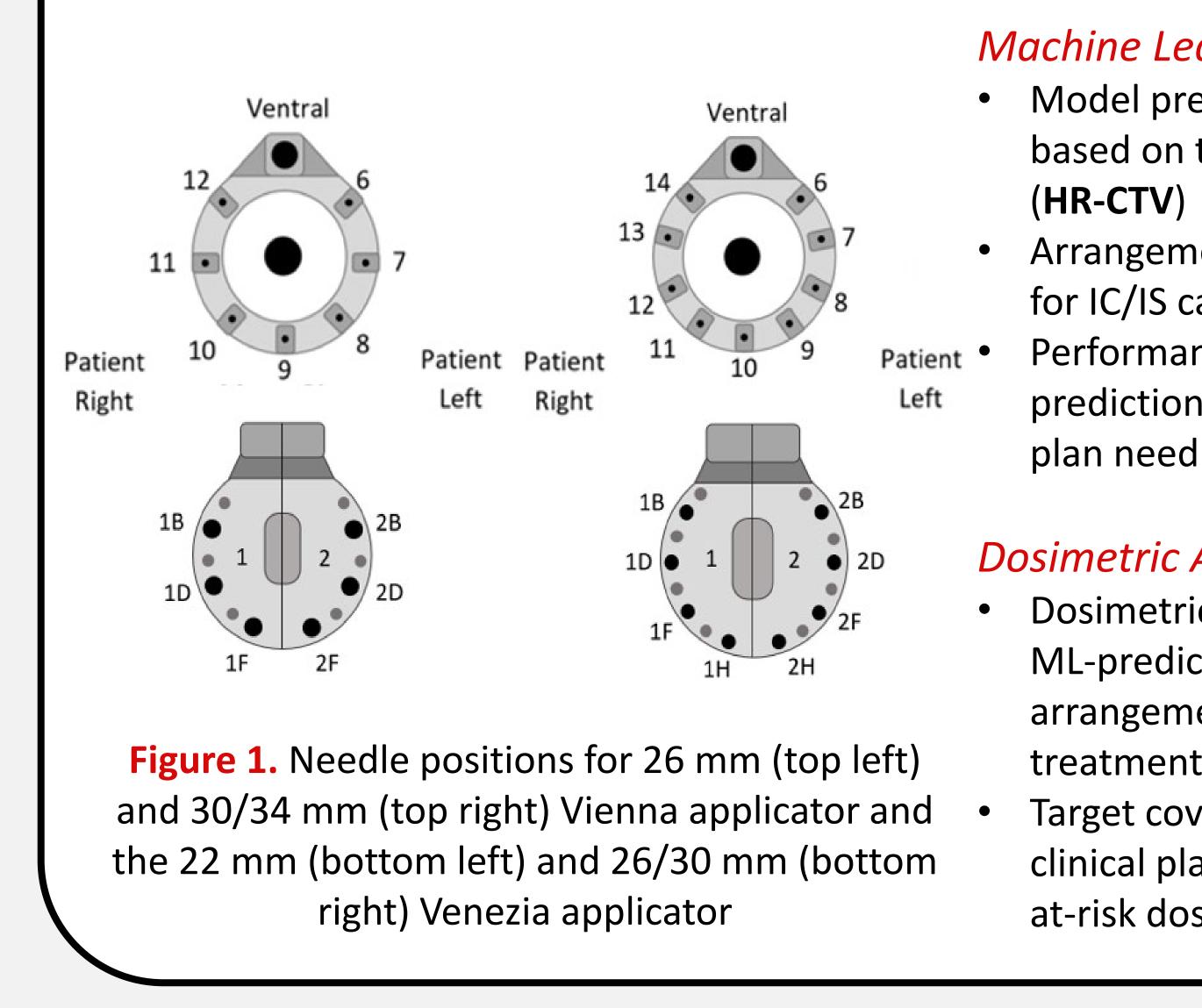


Dosimetric Impact of Using Machine Learning-Predicted Hybrid Interstitial Needle Arrangements for High-Dose-Rate Cervical Brachytherapy Kailyn Stenhouse^{1,2}, Michael Roumeliotis³, Kevin Martell⁴, Robyn Banerjee⁴, Tien Phan⁴, Corinne Doll⁴, Philip Ciunkiewicz5, Svetlana Yanushkevich⁶,

University of Calgary / Department of Physics and Astronomy, Calgary, AB. **GARY**² Tom Baker Cancer Centre / Division of Medical Physics, Calgary, AB. ³ Johns Hopkins University / Department of Radiation Oncology and Molecular Radiation Sciences, Baltimore, MD.

Impact / Innovation


- High-dose-rate brachytherapy (HDR-BT) using hybrid interstitial (IC/IS) applicators is crucial for cervical cancer patients with large/irregular tumours
- Needle arrangement impacts organ-at-risk and tumour dose, correlated with toxicity and local recurrence^{1,2}
- Needle selection is complex, relying on physician expertise,³ highlighting the need for predictive models

Goal – Quantify the **dosimetric impact of machine learning predicted needle arrangements** to assess clinical benefits of model in a prospective study

Materials & Methods

Patient Cohort

- 10 cervical cancer patients receiving HDR-BT (December 2020 October 2022)
- Treated using intracavitary (IC) or hybrid interstitial (IC/IS) ring or semi-lunar ovoid applicators – Vienna or Venezia (**Figure 1**)

References

- 1. Fokdal L., Sturdza A., Mazeron R., et al. **Radiother Oncol**. 2016:120(3):434-40.
- 2. Fortin I., Tanderup K., Haie-Meder C., et al. **Brachytherapy**. 2016:15(S1):S21.
- 3. Banerjee R., Kamrava M. Int J Womens Health. 2014;6:555-64.

Sarah Quirk⁷, Philip McGeachy^{1,2,4}

⁴ University of Calgary / Department of Oncology, Calgary, AB. ⁵ University of Calgary / Department of Biomedical Engineering, Calgary, AB. ⁶ University of Calgary / Department of Electrical and Software Engineering, Calgary, AB. ⁷ Brigham and Women's Hospital / Department of Radiation Oncology, Boston, MA.

Machine Learning (ML) Prediction Model predicts IC or IC/IS implant based on target volume geometry

Arrangement of needles predicted for IC/IS cases

Performance metrics compare ML predictions to clinical treatment plan needles

Dosimetric Assessment

Dosimetric differences between ML-predicted and clinical needle arrangements assessed for three treatment fractions

Target coverage matched to

clinical plan, differences in organsat-risk doses assessed

Patient Cohort

- 5 of the 10 patients had ML-predicte agreement with treatment applicato
- These were eligible for replanning to arrangement dosimetry

Machine Learning Performance (Tal

- Average agreement between ML-pre needles ~80% for all metrics
- 40% of patients had full agreement between MLpredicted and clinical needles

Patient #	Bladder D2cc (cGy)		Rectum D2cc (cGy)		Sigmoid D2cc (cGy)		Bowel D2cc (cGy)	
	Fx 1	Fx 2 & 3	Fx 1	Fx 2 & 3	Fx 1	Fx 2 & 3	Fx 1	Fx 2 & 3
1	-48.0	-17.4	-51.4	-8.0	-94.1	-9.8	-88.1	-48.0
2	4.7	7.0	-4.0	3.8	-43.3	4.1	-6.4	4.7
3	-95.4	-12.5	-62.3	8.4	-55.3	9.5	-9.7	-95.4
4	-10.6	-4.0	19.5	-2.6	-0.6	2.9	-0.1	-10.6
5	-53.3	-28.5	-31.3	4.1	-6.1	1.9	-12.6	-53.3
Average	-40.5	-11.1	-25.9	1.1	-39.9	1.7	-23.4	-40.5

Table 2. Differences between ML-predicted needle replan and the clinical plan dosimetry. A negative value (shown in green) indicates a reduction and a positive value (shown in red) indicates an increase in organ-at-risk doses when using the ML-predicted needles.

Conclusions ML-predicted needle arrangements have greatest dosimetric improvement for first fraction For the following fractions, differences between the ML-predicted and clinical needle arrangements had minimal impact on plan quality, leading to comparable plans Further work assessing model performance across a large cohort of patients in a multi-centre

- setting is required

Funding Support

Natural Sciences and Engineering Research Council of Canada University of Calgary Eyes High Strategy Alberta Innovates: Data-Enabled Innovations

Results

IC/IS applicator in	Performance Metric	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5	Average
IC/IS applicator, in	Accuracy	66.7%	100%	57.1%	87.5%	100%	82.3%
ompare needle	Balanced Accuracy	66.7%	100%	58.3%	87.5%	100%	82.5%
	Precision	80.0%	100%	66.7%	80.0%	100%	85.3%
e 1)	Recall (Sensitivity)	66.7%	100%	50.0%	100%	100%	83.3%
icted and clinical	Specificity	66.7%	100%	66.7%	75.0%	100%	81.7%

Table 1. Performance metrics for machine learning model needle arrangement prediction compared to clinical needle arrangement

Alberta Health Services

Dosimetric Comparison (Table 2)
-------------------------	----------

- Dosimetric differences between ML and clinical plans were most significant for **first fraction**
- Largest changes occurred when:
 - 1. Needles not used clinically until the second and third fractions
 - 2. Fewer needles were used for the first fraction
- Using the ML-predicted needles resulted in average organ-at-risk doses **improving**
- Factors impacting dosimetry, from most to least important appear to be:
 - 1. Use of hybrid interstitial needles
 - 2. Number of needles used
 - 3. Arrangement of needles

The presented machine learning-based decision support tool shows strong predictive capabilities in a prospective setting, supporting the utility of such a model in a clinical setting.

EMAIL: kjstenho@ucalgary.ca