Learning-empowered Real-time Needle Identification for **Ultrasound-guided** Percutaneous Liver Tumour Ablations

Shuwei Xing,¹ Ningtao Liu,^{1, 3} Derek W. Cool,² Shuiping Gou,³ Elvis C.S. Chen,¹ Terry M. Peters,¹ Aaron Fenster¹ ¹Robarts Research Institute, ²Department of Medical Imaging, Western University, London, Ontario, Canada ³School of Artificial Intelligence, Xidian University, Xi'An, ShaanXi, China | xshuwei@uwo.ca

MOTIVATION

In liver tumour ablations, both needle tips and shafts need to be accurately tracked in real time during freehand ultrasound-guided insertion.

However, the visibility of the needle may be only partial or imperceptible. Challenges: In-plane imaging limitations

Poor US image quality

Steep insertion angle and high insertion depth Trade-off between US penetration

depth and image resolution

Similar acoustic impedances as needle

Needle veering away from the plane Micro-motions from maintaining in-plane

insertion

Abrupt changes from breathing, pulsation¹

Additional constraints

Common US artifacts (reverberation)

Straight-line shaped structures resemble the needle²

Contributions:

Developed a robust real-time identification method for the needle tip and shaft in freehand percutaneous liver tumor ablations. Specially:

Reference window control module for "memory" data filtering

- Proposal feature aggregation module for needle enhancement
- **Needle tip detection module** for suppressing outside "noise"

RESULTS (bə (mm) <u>ප</u> 4 **4**₁ N 2 3 N 5 6 1 8 9 0 N 2 3 N Case

METHODS

Case D: Sequential images with abrupt changes

Data description:

64 US video clips

13 patients with focal liver tumours 651 US frames per clip on average Training: Testing = 50:12

SUMMARY

Developed a deep learning-based algorithm with "memory" function, which

Achieved clinically acceptable accuracy

 $(1.85^{\circ} \pm 0.62^{\circ}, 4.19 mm \pm 1.13 mm)$

Robust performance in micro- and macro-motions

Trained and evaluated on patient data

References: ¹W. Yan, et al. (2023) Medical Image Analysis 88, 102847 ²D. Gillies, et al. (2020) Medical Physics 47(10):4956-4970.

ACKNOWLEDGEMENTS

