Learning-empowered Real-time Needle Identification for Ultrasound-guided Percutaneous Liver Tumour Ablations

Shuwei Xing, Ningtao Liu, Derek W. Cool, Shuiping Gou, Elvis C.S. Chen, Terry M. Peters, Aaron Fenster

1Robarts Research Institute, 2Department of Medical Imaging, Western University, London, Ontario, Canada
3School of Artificial Intelligence, Xidian University, Xi’an, ShaanXi, China | xshuwei@uwo.ca

MOTIVATION

In liver tumour ablations, both needle tips and shafts need to be accurately tracked in real time during freehand ultrasound-guided insertion. However, the visibility of the needle may be only partial or imperceptible.

Challenges:

- In-plane imaging limitations
 - Needle veering away from the plane
 - Micro-motions from maintaining in-plane insertion
 - Abrupt changes from breathing, pulsation
- Additional constraints
 - Poor US image quality
 - Steep insertion angle and high insertion depth
 - Trade-off between US penetration depth and image resolution
 - Similar acoustic impedances as needle

Contributions:

Developed a robust real-time identification method for the needle tip and shaft in freehand percutaneous liver tumour ablations. Specially:

- Reference window control module for “memory” data filtering
- Proposal feature aggregation module for needle enhancement
- Needle tip detection module for suppressing outside “noise”

METHODS

Data description:

- 64 US video clips
- 13 patients with focal liver tumours
- 651 US frames per clip on average

Training: Testing = 50:12

RESULTS

Case A: linear structure confusion
Case B: Poor image quality
Case C: Multiple needles
Case D: Sequential images with abrupt changes

SUMMARY

Developed a deep learning-based algorithm with “memory” function, which
- Achieved clinically acceptable accuracy (1.85° ± 0.62°, 4.19 mm ± 1.13 mm)
- Robust performance in micro- and macro-motions
- Trained and evaluated on patient data

ACKNOWLEDGEMENTS

References:

1W. Yan, et al. (2023) Medical Image Analysis 88, 102847.