Implementation and Validation of Non-Uniform Magnetic Fields into PENELOPE/penEasy

Impact / Innovation

- This work provides a reliable and accurate means of simulating electron transport via PENELOPE ${ }^{1}$ in non-uniform (realistic) magnetic fields.
- We validate our implementation of non-uniform magnetic fields in PENELOPE against a $4^{\text {th }}$-order Runge-Kutta (RK4) numerical solution.

Materials \& Method

- A means of introducing a magnetic field map to PENELOPE simulations from a user-defined text file is developed.
- We introduce a trilinear interpolation scheme into PENELOPE source code so that the field can be obtained at any point in the volume.
- As validation, 6, 12, and 18 MeV test electrons with a polar angle of 45° were transported through a linearly increasing magnetic field directed parallel to the z-axis with a strength from 0 T to 10 T over 50 cm .
- 25 MC trajectories for each energy were evaluated against the RK4 prediction.

