

UNIVERSITY OF

CALGARY

Multi-timepoint dosiomic modeling of patient-reported dysphagia Owen Paetkau¹, Sarah Weppler², Andrea Seibel³, Ekaterina Tchistiakova², Charles Kirkby¹

¹ University of Calgary / Department of Physics and Astronomy, Calgary, AB. ² Tom Baker Cancer Centre / Division of Medical Physics, Calgary, AB. ³ Tom Baker Cancer Center / Division of Rehab Oncology, Calgary, AB.

Impact / Innovation

Difficulty swallowing, or dysphagia, is a key survivorship issue in head and neck cancer (HNC) radiation therapy. Current techniques reduce mean pharyngeal constrictor muscle (PCM) dose. Could more be done to reduce toxicity?

Dosiomics summarizes important features of the dose distributions, which machine learning can use to identify new correlations with toxicities¹.

Weekly dose variations from the original treatment plan can be measured.

Goal – use dosiomic features from multiple radiotherapy timepoints and imaging modalities to predict late patient-reported dysphagia.

Materials & Method

Patient Cohort

64 HNC patients were treated with curative chemo-radiotherapy. MDADI surveys were completed at >12 months after completion of treatment.

MD Anderson Dysphagia Inventory summary score ≤ 60 was identified as patient-reported dysphagia, with a low score indicating higher symptom burden.

Dosiomic Feature Modeling

Deformable image registration used to create synthetic CT images of weekly CBCT anatomy.

Original treatment plan was re-calculated on the synthetic CT to measure weekly delivered dose.

Feature extraction was performed with original and wavelet filters from PyRadiomics².

- Applied isotropic voxel size and discretization.
- Pharyngeal constrictor muscles (PCM) and 80%/95% isodose structures used as masks.

Features are sent to machine learning pipeline.

References

1. Wu et al. 2020. *Oral Oncology.* 104. DOI:10.1016/j.oraloncology.2020.104625. 2. Van Griethuysen et al. 2017. *Cancer Research* 77 (21): e104-e107. DOI: 10.1158/0008-5472.CAN-17-0339.

Patient Cohort

Cohort (n=64) consisted of 14% patient-reported dysphagia patients. Dysphagia risk factors (i.e., age, smoking/alcohol status, etc.) were shown

in equal distributions between dysphagia and asymptomatic groups.

Dosiomic Modeling Results

• Fig. 2 shows the random forest (RF) classification pipeline.

- Imbalanced learn and F-score optimization were used to balance groups. SMOTE resampling was applied to up sample dysphagia group.
- Boruta feature reduction method using with 5-fold cross validation.
- Fig. 3. shows the model results, presenting the balanced accuracy.
- Testing curve does not match well with training due to low statistics.
- Fig. 4. presents the dosiomic feature types frequently identified.
- Gray-level (GL) features describe relationship between nearby voxels, or textures within an image.

Choose Choose imepoint Features

Fig. 2. Classification pipeline to predict patient-reported dysphagia.

Planned dosiomic features wer

Features extracted on weekly do

- to those extracted from the planned
- Work needs to be done to validat

Results

First-order and texture features most useful features categories.

Conclusions

l. Our	re able to create a successful prediction model.
ower importa	ose distributions have similar predictive power
distri	d dose distribution.
ent. protoc	te models, with a test set current in development.

EMAIL: dowen.paetkau@ucalgary.ca

Fig. 3. Balanced accuracy for the training and testing models. The testing curve shows inconsistent performance due to low testing statistics

> machine learning model was able to identify nt dosiomic features based on the planned dose ibution. Further work is required to develop a ol aimed to reduce patient-reported dysphagia.

