ARO-COMP Joint Scientific Meetin

caro acro

INNOVATION / IMPACT

- Novel methodology of combining OAR avoidance with 4π sampling is presented.
- Optimized arc selection has the potential to reduce OAR doses for lung SBRT while maintaining target conformity.

INTRODUCTION

- OAR sparing is possible for lung SBRT using non-coplanar optimization¹.
- Mean arc distance (MAD)² can be used to quantify arc separation and enforce 4π sampling in SRS/SRT.

METHODS AND MATERIALS

- The Möller-Trumbore ray-triangle intersection algorithm³ was used to efficiently compute 4π cost associated with overlap between OARs and PTV in the beams-eye-view (BEV) (Figure 1).
- A stochastic algorithm generated 100,000 random combinations of arc trajectories.
- Patient specific optimized arcs chosen by balancing percentiles along number lines of both 4π cost (OAR avoidance) and MAD (4π sampling) in tandem (Figure 2).
- VMAT plans optimized retrospectively on a cohort of 18 lung SBRT patients for both clinical and patient specific arcs (Figures 3 to 5).

Static Couch Non-Coplanar Arc Selection for Lung SBRT Treatment Planning John D. Lincoln MSc¹, R. Lee MacDonald PhD MCCPM^{1,2,3}, Alasdair Syme PhD FCCPM^{1,2,3}, Christopher G. Thomas PhD MCCPM^{1,2,3,4}

1) Department of Physics & Atmospheric Science, Dalhousie University, Halifax NS, Canada 2) Department of Medical Physics, QEII Health Sciences Centre, Halifax NS, Canada 3) Department of Radiation Oncology, QEII Health Sciences Centre, Halifax NS, Canada

4) Department of Radiology, QEII Health Sciences Centre, Halifax NS, Canada

RESULTS

Figure 1: Construction of example 4π cost map using OARs (A-G) weighted by organ specific dose tolerance and summed to yield map in (H). Dark blue regions indicate low cost, while brighter regions indicate high cost. Brightest regions indicate raytracing through holes in the CT when arms were raised

CONCLUSIONS

- Optimized non-coplanar arcs for lung SBRT reduced maximum doses to five of six OARs considered (p < 0.05).
- Balancing 4π cost with 4π sampling ensured target conformity remained clinically acceptable below a value of 1.2

REFERENCES

- **Dong et al.** 4π Noncoplanar Stereotactic Body Radiation Therapy for Centraly located or Larger Lung Tumors. *IJROBP* 2013. 86(3) 407-413.
- MacDonald et al. Mean Arc Distance (MAD): a quantity to compare trajectory 4π sampling in single target cranial stereotactic radiotherapy. *Biomed Phys Eng Express* 2022. 8(5).
- Möller & Trumbore. Fast, minimum storage ray/triangle intersection. In: ACM SIGGRAPH 2005 Courses. 2005: 7-es.

Cancer Care Program

ACKNOWLEDGEMENTS

We gratefully acknowledge Dr. Robin Kelly for the creation of the ESAPI script used to extract RTOG metrics from the Eclipse TPS. JL also acknowledges the CIHR GSD-167032

CONTACT INFORMATION

- jlincoln@dal.ca
- Chris.Thomas@nshealth.ca