v Development and Evaluation of a GUI using Al-assisted Algorithm for Catheter
Reconstruction in MR-only Gynecological Interstitial HDR Brachytherapy
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INTRODUCTION

During MRI-guided HDR gynecological brachytherapy, several
catheters are inserted through a standard template. Current approach,

Save the digitization to a file

Figure 2 (a-b), overlap layer view of T1-3D and T2-3D image
dataset. Window/level is adjusted for better visualization of
catheter locations. Selection of the catheter locations in the
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manual reconstruction of the implanted catheters, is time-consuming. We reference slice is shown in (c). Followed with manually inputting the file. L - “.“ — O X o
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developed a novel deep-learning-assisted-semi-automatic (DLASA) free length of all channels, the final input file (d) is completed. We HE*;Fl-'E'F h]“- - Ny E;;ngdl\;jstanrqleanlltog:: L;S;;[:z izzglle
algorithm | and a Graphical-User-Interface  (GUI) for c§theter can start the catheter reconstruction by clicking the GUI interface in Finalize the input file by manually L loeatfen slie by slice i needed o .
reconstruction. We present the GUI and robustness of DLASA algorithm. (e); By clicking the Napari ICON, the catheter reconstruction can be selecting the reference image e I.STE)_?‘ # 1 qe??ne the image folder || STEP # 2 Find the Training Model ® edeporn
visualized at different planes (f-g). Fine adjustments of digitization plane Please select Eiﬂ‘: contains T1images... Please select T1 trained model.. o AroyDicomSiackT1 B
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can be done in orthogonal views (h). When satisfied with the K |
digitization, we can save the final catheter digitization information. D _ . !f) S
METHOD 3D visualization of the final axial .
T1 and T2 slices - e T
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A GUI was built using open-source Python libraries. The algorithm : = —
and workflow are shown in Figure 1 and 2, respectively. All catheters are = || ooResearch Project_needielmagesiT2patent D Research Project_neede\Models\unet neede_T2.hdf5
localized at a reference image slice which is the slice just before the e s 0
catheters enter into the standard template. Information in the input file is i et -
pgsseo} to U-I\!et model to identify al! possible catheter pF)S|t|ons in a - : Open T2 IMG Folder  Select T2 Trained Model | o .
given image slice. Then, the true location of each catheter is tracked by - O] Tandem
finding the extrema in T1l- and T2-weighted MR images. Once o= = 4 == = || STEP # 3 Gnenerate Input File and Predict | o vo Input| [Predict ® Aroypicomstac
reconstruction is completed, catheter positions are saved to xls file. - ’ = (
Modified Napari 3D orthogonal viewer is used to view and edit il o }Q”ﬁa i B
reconstructed catheter position on three cardinal image planes. To (b) .
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evaluate the algorithm’s catheter tracking performance, catheter oo ll>DedE : Em:ﬁE::Ezl';E:;"‘EILZ"%"E?;:;'?;’;;'Siiﬁé?;‘é.Enmu_ -
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reconstruction is compared with a manual reconstruction for 25 patients. = || Reacbicontmages Image type:Ax T1 0 Femalepelvi .
Figure 1. Co-registered T1 . .
alg:;; imaoggig(:,liee;seedfor Starting Slice End Slice  Total channel Channel Col Row Free length (mm) : E
catheter reconstruction as gﬂ 20 180 15 ; 1:2 iig 15? : :
the they appear bright and E ppt’w 3 211 751 132 m i T2_Final -
dark, respectively. T1 and T2 | 3 Sending 4 230 251 131 - 50 m
images were used 5 3 el 5 254 252 116 . - Running status and detailed .
separately to train models g i e 6 164] 236 123 - 2o U ¥ instruction for generating input a
to obtain the probability for T ana 2 : : S . o2l 251 - I file will be updated here as well |l
masks. The post processing images a6 i § - 8 202, 24 ol 3 "P :
box was used to use the 2 ) 190 ;ig ii gi o as above processing bar.
information on input files - ®  Needle_points 11 257 233 126
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catheter reconstruction.
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For 15/25 patients, the catheters reconstruction agreed with the 2 e g # digitization points 3.3 x 10°* The adoption of this GUI in the brachytherapy workflow has potential to improve treatment efficiency by reducing planning time, clinic resources,
manual reconstruction (mean error=0.4mm, SD=0.7mm. Among them, & a 0 Mean O-4mm and manual selection errors. Future work include reducing the false positive by fine tuning the DLASA, examine GUI with more patients, and test GUI’s
. . . ° @ 04 STDEV 0.7 mm | _ _
slightly over 97% of reconstruction positions had error < 2mm. The Al- 5 04 = MID 0.3 mm outputin TPS for further evaluation.
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patlents reconstruction doesn t agree We” Wlth the manual Figure 3 (a) As an example of Patient #15, the Al assisted digitization performance shows a great agreement with the manual digitization by ’ ' ] ’ ] _’ ’ ’ Y ] ’ P g 5 5 y
reconstruction due to the false positive detection by training model. experienced operator. (b) For 15 patients , the catheters reconstruction agreed with the manual reconstruction (accuracy is within 0.4mm and gynecologlcal interstitial brachythera PY. J. Appl Clin. Med. Phys,23(2) https//d0|org/101002/acm213494
standard deviation is 0.7 mm, the % of digitization positions with the mean error < 2 mm amongst digitization positions is over 97%).




