

Comparison Of Inspiration And Expiration Density-based CT Measurements With CT **Texture-based Radiomics In Predicting COPD Symptoms**

Meghan Koo MSc¹, Kalysta Makimoto BSc¹, Wan Tan MD², James Hogg MD PhD², Jean Bourbeau MD³, and Miranda Kirby PhD¹ ¹Toronto Metropolitan University, Toronto, ON Canada, ²Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC Canada; ³McGill University, Montreal, QC Canada.

Purpose: To investigate the association between texture-based radiomics on inspiration and expiration computed tomography (CT) with Chronic Obstructive Pulmonary Disease (COPD) symptoms, and compare these emerging features to established density-based CT measurements

Rationale

- capture the complex structural changes that occur in the lung
- quantifies the spatial relationships of voxels

Methods

<u>Canadian Cohort Obstructive Lung Disease (CanCOLD)</u> Cohort between 45-90 years of age selected by random digit dialling from the general Canadian population⁴.

Pulmonary Function Testing (PFT)

Forced expiratory volume in 1 second (FEV₁) was obtained at each CanCOLD centre by technicians. Lung function decline (ΔFEV_1) was calculated using annualized change in FEV₁

Symptom Questionnaires

St. George's Respiratory Questionnaire (SGRQ) \geq 25 and Body-mass index (B), the degree of airflow obstruction (O) and dyspnea (D), and exercise capacity (E): BODE Index \geq 1 were used as the COPD Symptom Assessment thresholds⁵

Figure 1: Proposed Pipeline.

• Existing CT biomarkers, such as density-based CT measurements^{1,2} derived from inspiration and expiration images, are pathologically validated in quantifying emphysema and gas trapping in COPD but do not fully

Texture-based radiomics³ is a novel technique that extracts detailed grey-level based textural information that

Results								
Demographic	CS							
We investigat	ed n=572 n	o COPD and	n=579 COP[) subjects.	Subjects we	re not different wit	th respect to	
race (p=0.251) and BMI ((p=0.287). FEV	V_1 worsens w	vith increasi	ng COPD se	verity (No COPD:	2.8 ± 0.8 L;	
COPD: 2.4 ± 0	0.8 L).							
Table 1: Multip	le Linear Reg	ression Models						
CT Measurement			FEV ₁ (n=1151)			ΔFEV ₁ (n=687)		
			Std. E	st. of QCT	P-value	Std. Est. of QCT	P-value	
Density-based Inspiration(LAA ₉₅₀)			-0.033		0.273	-0.016	0.809	
Density-based Expiration (LAA₈₅₆)			-0.014		0.681	-0.172	0.035	
Texture-based Inspiration (RadScore_{Insp})			-0.080		0.006	-0.028	0.650	
Texture-based Expiration (RadScore_{Expr})			-0.378		<.001	-0.137	0.049	
Significance of d	ifference: p<0.0)5						
LAA ₉₅₀ -	▲ SGRQ ≥ 25		LAA ₉₅₀ -		● BODE ≥	Figure 2: Odds F our CT measurer confidence interv binary outcomes of	Figure 2: Odds Ratio (OR) plots of our CT measurements with a 95% confidence interval (CI), predicting binary outcomes of SGRQ \ge 25 and	
LAA ₈₅₆ -	┝┻┤		LAA ₈₅₆ -			BODE ≥ 1. An O the measuremen	BODE \geq 1. An OR=1 indicates that the measurement does not affect	
RadScore _{Insp} -			RadScore _{Insp} -			the odds of a g OR>1 indicate	iven outcome. An es that the	
RadScore _{Expr} -		I 	RadScore _{Expr} -		• •	measurement is higher odds of	associated with a a given outcome	
0.6	0.8 1.0 Oddo Do	1.2 1.4	0.8	1.0 1.0	1.2 1.4	a lower odds of ar	1 outcome.	

Conclusions

Our results showed that texture-based radiomics extracted from CT images provide complementary information to existing CT features. These emerging biomarkers may detect structural changes that can be used for predicting the occurrence of COPD symptoms and longitudinal lung function decline.

References

[1] P.A. Gevenois, et al. Am J Respir Crit Care Med, 1996.

[2] J.D. Schroeder, et al. AJR Am J Roentgenol, 2013

We would like to thank all researchers, staff, and subjects that are part of the CanCOLD study. This research was funded by NSERC, the Canadian Lung Association and the Canadian [3] Zwanenburg A, et al. *Radiology.* 2020; 295(2):328-338 Institutes of Health Research – Institute of Circulatory and [4] Bourbeau, J., et al., *COPD*. 2014; 11(2):125-132. Respiratory Health. M. Kirby acknowledges support from the Parker B. Francis Fellowship and the Canada Research Chair [5] Global Strategy For The Diagnosis, Management, And Prevention Of Chronic Obstructive Pulmonary Disease (2023 Report) Program (Tier II).

ARKER B. FRANCIS

[6] Huang Y., et al. *Radiology.* 2016; 281(3)947-957

BREATHE

the lung association

Acknowledgments