Uncovering the Armpit of Axillary SBRT

Adam Mutsaers, JS Fernandes, GF Li, DMF Palhares, S Ali, EA Barnes, H Chen, GJ Czarnota, I Karam, I Poon, H Soliman, D Vesprini, A Sahgal, P Cheung, <u>AV Louie</u>

Department of Radiation Oncology, Sunnybrook Health Sciences, Odette Cancer Centre

Introduction

UNIVERSITY OF TORONTO

Increasing use of SBRT in both primary and metastatic setting; unique challenges with rare anatomic locations like the axilla

Simulation parameters, radiation prescriptions and volumes vary

Radiation Oncology

No dedicated data on process or outcomes for Axillary metastases (AM)

Objective

- 1) Review outcomes of SBRT for AM
- Primary endpoint: local failure (LF)
- Secondary: symptom relief, progression-free survival (PFS), Overall survival (OS), and toxicity

2) Identify differences in simulation and treatment process in order to create institutional standard

Materials & Methods

A single-institution retrospective review conducted for patients with:

- Axillary metastatic disease, any primary
- Minimum dose BED10=48 Gy (30Gy/5)

Treatment indication grouped as:

- Oligometastasis (OM) (<=5 lesions)
- Oliogprogressive (OP) (<=5 growing lesions)
- Symptomatic progression (SP)

Statistics:

- Descriptive statistics
- · Kaplan Meier method, competing risk analysis

Simulation and Treatment Process Heterogeneity Fig 7. Planning and treatment parameters Fig 6a.Prescibed Dose (Gy/fraction) No 10.0% Case 60% 10 15 20 40% Figure 6b.Dosimetry (Gy) Med IQR-1 IQR-3 PTV 0.96 41.6 37.4 43.1 DMAX PTV CT FUSI 41.0 38 9 35.5 Mean Plexus 27.8 21.7 31.1 Dmax

Discussion

Symptom response rate: 57% CR, 21% PR, 25% SD, 3% progressive

Local failure rates low, but slightly above some other reported series - small sample size vs others (dose, histology, etc.)

Dose limiting organ most often Brachial Plexus (21-32Gy in our series): ongoing debate and emerging literature regarding toxicity threshold in hypofractionated treatments

Rare grade 3 toxicity, No grade 4+ toxicity

Substantial heterogeneity in process creates opportunity for error, inefficiency

Accumulating evidence suggesting benefit of SBRT in metastatic patients raises importance of delivering treatment effectively to rare anatomic locations

Conclusion

SBRT for AM appears effective and welltolerated across a variety of indications, histologies and dose ranges

Significant heterogeneity in treatment process has led to the development of standardized institutional protocol