

Evaluation of Patient-Specific Quality Control (QC) for Markerless Dynamic Tumor Tracking (MDTT) Deliveries

¹BC Cancer Vancouver, BC, Canada Contact: marie-laure.camborde@bccancer.bc.ca / abergman@bccancer.bc.ca

Provincial Health Services Authority

INTRODUCTION

Dynamic tumour tracking (DTT) for stereotactic ablative radiotherapy (SABR) often requires fiducial marker insertion to localize and verify target positions. The Vero4DRT (Brainlab AG) linac also offers a *markerless* dynamic tumor tracking (MDTT) module which can eliminate the need for fiducial marker insertion by tracking soft tissue targets or other anatomical surrogates. The patient-specific Quality Control (QC) results for marker-based vs *markerless* DTT deliveries can be compared.

AIM

To report on patient-specific QC results for markerless dynamic tumour tracking (MDTT) deliveries in a phantom and compare to conventional marker-based deliveries for liver and lung SABR treatments.

METHOD

- Vero4DRT linac (Figure 1), delivered clinical plans, 5 7 fields step-and-shoot IMRT DTT plans to two commercially available motion phantoms, modified with in-house additions.
- Motion platforms were programmed with patient-specific respiratory motion traces acquired at 4DCT.

Vero4DRT quick description

- DTT achieved using a gimbal-mounted waveguide and collimation system
- Motion-correlation models are built between an external IR reflector signal and internal kV fluoroscopy-detected tracking structures (implanted markers or soft-tissue landmarks)
- Verification orthogonal kV image pairs are acquired during DTT delivery (at 1 Hz frequency)
- Image-detected vs model-predicted internal positions recorded in ExacTrac imager log files

Ion chamber point-dose measurement (Figure 2)

A 15 x 15 cm² acrylic phantom was placed on a Brainlab-supplied 1D moving platform. The phantom is equipped with:

1) 0.6cc farmer chamber insert

- 2) "Lung tumour" like object (imitation small bird egg) as MDTT tracking structure
- 3) 3 implanted gold-seed fiducials (1 mm x 3 mm)

<u>Film (Gafchromic</u> ™ <u>EBT3 2D measurement</u> (Figure 3)

Quasar[™] respiratory motion phantom with an in-house acrylic cylindrical insert containing: 1) 6.0 x 7.5 cm² film receptacle (coronal plane) with 3 puncture fixtures to mark corners 2) 'Liver Dome' shaped end-cap as MDTT tracking structure

3) 3x gold-seed fiducial markers (1 mm x 3 mm)

<u>Delivery</u>: 5 clinical plans were delivered to both phantoms in the following modes: Static mode (no motion)

- Fiducial-marker DTT (conventional tracking)
- Markerless DTT (novel tracking):
 - \rightarrow Tracking Structure="Lung tumour" (egg) or "Liver Dome" (acrylic cap)

<u>Analysis</u>

- All chamber measurements were compared to RaySearch RayStation[™] calculated dose
- 2D film distributions from marker- and markerless- DTT were compared to static deliveries → Epson Expression 10000 XL scanner, FILMQA[™] PRO software, 2D gamma analysis
- Imaging log file statistics (3D vector deviations between detected vs predicted tracking structure locations) were collected for all plans.

M-L. CAMBORDE¹, T. KARAN¹, R.HORWOOD¹, A. MESTROVIC¹, <u>A. BERGMAN¹</u>.

sert with implanted

old-seed fiducials

puncture

fixtures

gold seed

Figure 3. QUASAR motion phantom with IR respiratory pad and in-house insert. Inset: "Liver Dome" insert with film plane, puncture fixtures and fiducial markers.

RESULTS

- markerless DTT
- See Graph 1

Film measurement

See Graph 2

CONCLUSIONS

ACKNOWLEDGEMENT

Both tracking methods meet our institutional passing criteria for patient-specific QC

marker based tracking (based on log file analysis).

• However, no impact on dose delivery is observed (2D film measurements).

Both tracking methods provide an equally viable treatment options.

dome phantom used in this study