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INTRODUCTION

+ Radiotherapy is an important component of cancer treatment with approximately 50%of all cancer
patients receiving radiotherapy during the course of their treatment.

* High dose rate brachytherapy isa form of radiotherapy, where a sealed highly radioactive photon
emitting radiation sourceistemporarily placed inside or in proximity of the tumor viathin hollow
implanted catheters/applicators irradiating the tumor from inside out.

* Current clinical treatment planning softwaretreat the patient’s body as a large water sphere,
ignoring attenuation of theradiation by the patient’s tissue and inserted needle/applicators.

* The most accurate method and the gold standard to calculate absorbed dose to the tumor and
radiation sensitive healthy tissues in radiotherapy is the Monte Carlo method.

» However, the Monte Carlo method is computationally expensive and too slowfor use in thetime-
sensitive clinical workflow.

AIM

Thisstudy aimsto provide a solution to the accuracy-time trade-off for high dose rate brachytherapy
dosimetry by using deep learning.

METHOD

Database:

Currently retrogective data from 98 patients that underwent lrridium-192 based high dose rate
breast brachytherapy were used to buildthe Deep Leaming model.

Monte Carlosimulations:

* Research treatment planning system RapidBrachy MCTPS! was used.

+ 107 decay events were simulated for each dwell position, witha voxel size of 1x1x1 mm?3

» Compuations were performed on Compute Canada cluster and lasted between 10 to 15 minutes
parallelizedon a 64 cores CPU.

Data for training:

* T he patients data was randomly split in training (70 patients) , validation (14) and test sets (14).

* 25 dwell positions were used to create 3D dose maps for training and validation sets and all the
dwell positionswere usedto create the dose maps forthe Test set.

* Volumeswere resampled to a voxel size of 1x1x1 mmg.

* The firg input to the model was the TGA3 dose to water. The second input to the model
represented patient body composition. It was either the patient tissue composition, or the respective
mass densities derived from the CT Hounsfield units. We also investigated the concatenation of the
volume of the inverse squared distance to the dwell position to the patient body composition
volume.

* Outputs were dose to medium calculated with Monte Carlo.

Preprocessing:

* We gudied the minimum volume size that we could use to crop around the dwell positions while
retaining the same dosimetric indices information. (see Figure 1)

* Non relevant interpolated dose values inside the source of T G-43 dose to water maps* were capped
to maximum Monte Carlo dose values to ease the training task.

+ Categorical patient tissues volumeand patient tissue mass densities volume were scaledto 0:1.

Deep Leaming model:

* U-Net architecture® was benchmarked to newly developed 3D Deep Leamning regression model
architecture designedto handle multi-input problem. (see Figure 2)

* The sum of absolute errors was minimized during the training.

» Adam optimizerwas used with a learning rate of 1e2 and a polynomial scheduler.

Workflow:
+ Train a model to predict dose maps in medium.
 Test the model predictions on never seen patientdata:
 For each patient, predict dose maps with the trained model for each dwell position, then build
the combined dose map withall thedwell positions contributions weighted by their dwell times.
» Compute relevant dosimetric indices from the ground truth Monte Carlo calculated dose maps
andthe Deep Learning model-based predicted dose maps.
» Compare dosimetric indices between ground truth dose maps and predicted dose maps. (See
Table 2)
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Figure 1. Proposed cropping strategy. Voxels closer to the dwell positions are kept to define the smallest cropping
boundaries that one can crop with to keep the same dosimetric indices information inside the cropped volume. My,
defines the voxels that make the 10 cm? closertothe center of all dwell positions. We assumed that dosimetric indices
of interest would be included in this M, volume. Usingthis method, volume size was set to 160 x 128 x 112 and
volumes cropped around the center of the dwell positions..
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Figure 2. Proposed layer level fusion network called C-Net. In this network, features are learned separately for the two
different inputs via two different Convolutional Neural Networks andthe second ReL U outputs of each convolution block
of both inputs are multiplied together element wise. The decoder part uses skip connection from the multiplied features
and not individual features. Fusion operation can be a multiplication : f(x.y)= x*y+x, or an addition : f(x,y)=x+y. The
figure shows the shallow version of the C-Net which we benchmarked with a U-Net. Shallow U-Net has [32,64,128]
channels, deep U-Net [16,32,64,128,256] and deep C-Net [12,24,48,96,192].
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RESULTS

Whole predicted
volume Lung Heart Skin Chest wall

403.3831941.960 7.97+3.531 7.026+1.255 9.53142.363 22.1842.177 9.626+2.148
U-Net shallowwpatient
tissues 1.906%1.320 0.644+1.203 2.073+1.434 3.286+3.422 1.278+0.303 1.844+1.386
U-Net deep wpatint
mass densities 1.496%1.138 0.703%1.131 1.740+1.150 2.72+3.773 1.176+0.234 1.680+1.373
C-Net deep add w
patient tissues and
distance to dwell 1.926+1.199 0.746+£1.217 2.078+1.101 2.631+1.742 1.545+0.673 2.077+1.141
C-Net shallowaddw
pOatient mass densities 2.202+1.199 0.702+1.174 2.492+1.470 3.726+3.276 1.779+0.370 2.177+1.365
C-Net shallowmul w
patient tissues 1.994+1.319 0.637+£1.171 2.109+1.438 3.976+4.269 1.213+0.293 2.212+1.786
C-Net deep mul w
patient mass densities 2.023+1.450 0.772+1.113 1.953+1.379 2.372+1.650 1.932+1.407 2.093+1.458

Table 1. Mean absolute percent error between Monte Carlo single dwell position dose maps and TGA3 dose in water and Deep Leaming predicted dose maps for our patient test st. From each architecture
presented in Figure 2 and trained with all different models, best performing models on the validation set were used to make prediction on thetest setand obtained the presented results.

P 7S S S TS TS

5.693%1.157 9.595+1.783 5.418+2.540 7.482+3.282 6.778+2.388
U-Net shallowwpatient
tissues 0.134+0.190 0.633+0.874 1.302+2.233 0.203+0.200 0.366+0.384
U-Net deep wpatint mass
densities 0.229+0.162 0.442+0.483 1.065+1.905 0.175+0.16 0.328+0.276
C-Net deep add w patient
tissuesanddistance to
dwell 0.315+0.245 0.767+0.745 0.985+0.681 0.290+0.324 0.345+0.318
C-Net shallowadd w
patient mass densities 0.236%0.185 0.435%0.402 1.312+2.184 0.311+0.199 0.409%0.377
C-Net shallowmul w
patient tissues 0.170%0.129 0.588+0.861 2.060+3.660 0.145%0.102 0.438x0.446
C-Net deep mul wpatient
mass densities 0.323+0.311 0.646+0.538 0.726+0.615 0.408+0.505 0.388+0.430

Table 2. Mean absolute percent difference between dosimetric indices obtained with Monte Carlo combined dose maps and obtained with T G43 and Deep Leaming predicted combined dose
maps. D, : Minimum dose received by x % of the volume, D, : Maximum dose received in x cm3

* From the above two tables, we can see that Deep Leaming predicted dose maps are much closer to Monte Carlo dose maps than T G43 water dose maps. For instance, T G43 CTV Dy, difference with Monte Carlo Dy, is
higher than fivepercent whereas it is lower than 0.5 percent for any Deep Learning model prediction.

* The prediction time with the Deep Leaming solution is on average less than 0.1 second for a dwell position dose map, which correspond to a combined dose predicted with Deep Learning in on average 15 sconds for a
complete treatment plan. For the same resolution Monte Carlo method takes between 10 to 15 minutes per dwell positiontoachievetype A uncertainties below0.1% inside the CTV.
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brachytherapy dosimetry.

» Any desired radiation quantity can be obtained with accuracies arbitrarily
close to those of the source Monte Carlo algorithm, but with much faster
computation times.
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