

# Quantification Of Radiomic Feature Variability Across Provincial CT Scanners

L. Tu<sup>1,2</sup>, H.H.F. Choi<sup>2</sup>, H. Clark<sup>1,3</sup>, B. Gill<sup>2</sup>, S. Young<sup>2</sup>, S. A.M. Lloyd<sup>1,2</sup>

<sup>1</sup>University of British Columbia, Vancouver, BC, CA; <sup>2</sup>BC Cancer Vancouver, Vancouver, BC, CA; <sup>3</sup>BC Cancer Surrey, Surrey, BC, CA

## Introduction

Radiomics is a quantitative medical image analysis approach used to improve diagnosis, prognosis, and radiotherapy (RT) treatment planning<sup>1</sup>. Radiomic features may be sensitive to computed tomography (CT) image acquisition parameters<sup>2</sup>. The potential inconsistency may impede robust analysis in multi-institutional collaborations.

## Aim

To investigate radiomic feature consistency of planning CT images acquired using provincial BC Cancer scanners.

## **Methods**

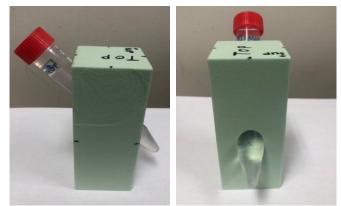



Figure 1: Foam phantom with a water insert.

- •A 3-D phantom was made from lung-equivalent foam and a water insert (Figure 1).
- The phantom was imaged with clinical General Electric (GE) CT scanners at all 6 BC Cancer centres using lung RT planning protocols.
- •61 radiomic features were extracted from automatically delineated contours using Imaging Biomarker Explorer (IBEX) software<sup>3</sup>.
- Features across centres were compared using Kruskal-Wallis H tests.

### **Results:** Image Acquisition Parameters Across the Province

Overall, centre-specific lung CT acquisition parameters are similar (Table 1). Differences in tube current and exposure time may be due to automatic exposure control settings.

| Centre | GE Scanner<br>Model | Tube Voltage<br>(kV) | Tube Current<br>(mA) | Exposure<br>Time (s) | Generator<br>Power (kW) | Convolution<br>Kernel | Slice Thickness<br>(mm) |
|--------|---------------------|----------------------|----------------------|----------------------|-------------------------|-----------------------|-------------------------|
| FV     | Optima CT580        | 120                  | 100                  | 1503                 | 5280                    | Lung                  | 2.5                     |
| VC     | Discovery RT        | 120                  | 150                  | 856                  | 18000                   | Standard              | 2.5                     |
| AC     | LightSpeed RT16     | 120                  | 40                   | 4000                 | 4800                    | Standard              | 1.25                    |
| VI     | Optima CT580        | 120                  | 10                   | 800                  | 52800                   | Standard              | 2.5                     |
| CI     | Advantage 4D        | 120                  | 10                   | 800                  | 52800                   | Standard              | 2.5                     |
| CN     | Optima CT580        | 120                  | 20                   | 500                  | 48000                   | Standard              | 2.5                     |

Table 1: Routine lung CT acquisition parameters across BC Cancer centres.

### **Results:** Radiomic Feature Variability

No significant difference in radiomic features between provincial scanners was observed (Bonferroni-corrected p > 0.05).

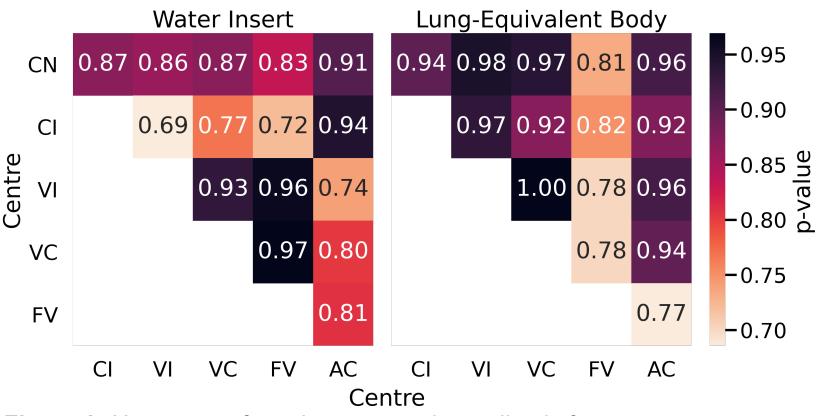



Figure 2: Heatmaps of p-values comparing radiomic features across centres.



## Conclusions

- Thus far, results do not preclude using provincial imaging data as a single data set.
- Other materials (ex. contrast dye, sand) may be included in future study.

### References

- 1. Gillies, RJ et al. Radiol 2016; 278(2):563-77.
- 2. Kim YJ et al. Comput Math Methods Med 2019; 2019(8790694).
- 3. Zhang, W et al. Med Phys 2015; 42(3):1341-53.

### **Acknowledgements**

Colleagues in BC Cancer Abbotsford, Kelowna, Victoria, and Prince George.

Contact me: Lorna Tu lorna.tu@bccancer.bc.ca

