A 3D Star Shot to Determine Axes of Rotation
Robert Corns, Kaida Yang, Mason Ross, Shiva Bhandari,

ABSTRACT

Star shots are a method to determine gantry, collimator and couch axes of rotation. A new technique to extend this traditional $2 D$ method to $3 D$ relates all three axes to each other.

THEORY

traditional star shot is a 2D technique

 exposing film to radiation slits. The slits are otated about an axis,orming a star at th
center of rotation.
To move to 3D, wrap a film on a cylinder instead of laying it flat on a
of laying it flat on a
fhantom. Slits are Figure 1. A 2D star shot three axes of rotation.

Figure 2. Collimator and couch rotations

 frm 2D-like star shot patterns. Gantry otation forms a virtual star shot.The slit exposures form cylinder sections. When the film is unwrapped these section appear as either lines or sinewaves

A star pattern represents
an approximate axis
center. It is described
by the smallest
circle that touches Figure 3. A 3D star sho each line/sine
oing through this center. For the collimator axis there is one such circle where the radiation enters the film and one where it
exits. Likewise for the couch axis. The gantry axis has a virtual star and circle at each end of the cylinder

MATERIALS AND METHODS
A cylindrical phantom was built
A cylindrical phantom w
GAF chromic film. An exterio cylinder was added as buildup.

The isocenter is aligned to the cylinder's center and
gantry axis to the cylinder's axis.
We expect the radiation isocenter to which is at the mechanical center

Exposures were taken with the 6FFF beam on a Varian TrueBeam linac. 300 MU were delivered per slit with settings: TrueBeam linac. 300 MU were delivered per slit with settings.
Collimator $=0$, Couch $=0$ \& Gantry $=0,40,80, \ldots, 320$ Colimator $=0$, Couch $=$ \& Gantry $=0,4,8, \ldots, 320$
Couch $=0$, Gantry $=0 \&$ Collimator $=15,45,75,345,315,285$ Collimator $=0$, Gantry $=0$ \& Couch $=0,30,60,90,330,300$

RESULTS

Comments: Settings for exposures can differ depending on circumstances.
A film such as in Figure 3 is binarized and the location of each white dot is a data point to be fitted by a curve. Multiple curves are used for each film
Zoom in to the center of a star. At this scale, each fitted curve is linear. To find the smallest circle that touches each line, pick all possible sets of three lines. a triangle with a unique inscribed circle. The larges
 slit exposure that make up the star

Pair up exit and entrance circles and join their centers with a line. These connecting lines represent the associated axis.

The gantry's star is virtual. Pick a star at each end of the cylinder. Find the circle at each end and join their centers to represent the gantry axis (see Figure 4).

Find the point P that is closest to the three axes lines (see Figure 5). The point P will be the center of a sphere that touches all three axes. Two of the axes lines will be tangent to this sphere and the third will cut through the sphere. The largest distance of P to a line represents the sphere's radius and hence the diameter score
Table 1 summarizes the results for the film in Figure 3.
If the cylinder is well aligned to the mechanical isocenter, the location of point P represents the position of the radiation isocenter relative to the mechanical isocenter. These are separated by a distance of 0.31 mm in the example in Table 1.

Figure 7. Binarize and fit the lines and sines. Use fitted curves to find the smallest circle touching each curve at the center of the star

TABLE 1 Results for the film in Figure 3 Smallest sphere

Smallest sphere	
Diameter	0.5085 mm
Center P	$(-0.25,0.042,0.19) \mathrm{mm}$
Distance from P to gantry axis	0.054 mm
Distanc from P to cocch axis	0.2543 mm
Distance from P to collimator axis	0.2353 mm

DISCUSSION
The 3D star shot is robust technique for determining the radiation isocenter. The theory of cylindrical sections is not sensitive to the orientation of the planes that cleave the cylinder. The radiation isocenter can be found, independent of this orientation. Below are two examples of cylinders that were poorly aligned to the mechanical center. The radiation isocenter may differ significantly from the cylinder's center but it will nevertheless be well identified.
This technique was designed to be cost effective, using a single sheet of phantom is inexpensive to construct. The 3D star shot fulfills the requirements for confirming the suitability of a linac for stereotactic radiosurgery.

Figure 8: Misaligned phantoms change the appearance of the slits exposures but not the information content. Left is a cm lateral shift \& right is a represented by lines and and the radiation isocenter will be well identified by this method.

CONCLUSION

A new technique for measuring the coincidence of all three rotation axes on a linear accelerator is presented his is a suitable technique for CPQR's guidelines, and will test a linear accelerator's readiness for stereotactic radiosurgery applications.

REFERENCES

- Kirkby C, Ghasroddashti E, Angers CP, Zeng G, Barnett E. COMP report: CPQR technical quality control guideline for medical linear accelerators and multileaf collimators. J App Clin Med Phys
2018;19(2):22-28. $\frac{\mathrm{https}: / / / d o i .0 r g / 10.1002 / a c m 2.12236}{}$ Corns R, Yang K, Ross M, Bhandari S, Aryal M,
Ciaccio P. A 3D star shot to determine the gantry collimator, and couch axes positions. J App Clin Med Phys. 2022; e13623.
https://doi.org/10.1002/acm2. 13623

