

Development of a small, cost-efficient scintillation detector for use in automated synthesis of PET radiopharmaceuticals

Hailey SH. Ahn¹, Liam Carroll¹, Robert Hopewell², I-Huang Tsai², Shirin A. Enger^{1,3} ¹McGill University, Montréal, Québec ²Montréal Neurological Institute, Montréal, Québec ³Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec

INTRODUCTION

- Multistep positron emission tomography (PET) radiopharmaceutical production is conducted within an automated synthesis module for enhanced safety and efficiency
- The key to the automation is radiation detectors to monitor the transfer of radioactivity between compartments
- Current detectors in use come at a high cost (\$2,000-10,000), thus motivating the development of a low-cost alternative

METHODS

- Geant4 Monte Carlo simulations were performed to design and optimize the detector geometry
- Plastic scintillating fibers, silicon photomultipliers, and low-cost electronics were used to construct the detectors
- ¹⁸F radiotracer (t_{1/2}=109.7 min) was used to calibrate and assess the detector performance

RESULTS	16-fiber	Spiral
Cost (US \$)	172	184
Measured $t_{1/2}$ (minutes)	167.7	105.88
Uncertainties (± mCi)	45	4

Two low-cost detectors were developed using plastic scintillating fibers and silicon photomultipliers

These detectors can be used to **facilitate troubleshooting** of faulty reactions during automated PET radiopharmaceutical synthesis

